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UNSTEADY CONVECTION MASS TRANSFER INSIDE A DROP IN THE 

PRESENCE OF VOLUME CHEMICAL REACTION* 

A.M. GOLOVIN and A.F. ZHIVOTIAGIN 

Unsteady diffusion inside a moving drop of material dissolved ina stream 
of viscous liquid is investigated at high P&let numbers. The diffusing 
material in the drop volume may take part in a first-order chemical re- 
action. The case is considered, when the concentration of the dissolved 
substance in the liquid surrounding the drop is uniform, and itstransport 
inside the drop depends on the velocity field distribution and the con- 
centration only in that region (the internal problem). The flow in the 
drop is assumed to be steady and to correspond to a spherical Hill vortex 
(at low Reynolds number). 

Previously the internal problem was investigated assuming constant concentration along the 
streamline /1,2/, which is obviously unsuitable /3/ in the region of a diffusion boundary layer 
which occurs when there is no chemical reaction for times less than @ID, where a is the drop 
radius and D the diffusion coefficient. To define the diffusion inside the drop the equation 
/4/ for the concentration averaged over the drop surface was considered. When the difference 
between the concentration and its averaged value is negligibly small (a quantity of the order 
of UPe, where Pe is the Peclet number), the investigation of the concentration distribution 
in the drop is analogous to that considered earlier in /l/. Calculations of the concentration 
distribution in the drop using the method of the diffusion boundary layer /3/, as shown in /4/, 
for times of the order of (.lu)lnPe requires taking into account the solute transport along the 
drop axis of symmetry. 

Below, using the method of joined asymptotic expansions inside the drop, several regions 
are established, the concentration distribution is determined in each of them, and the stream 
of material diffusing through the drop surface in the neighbourhood of the front and rear stag- 
nation point are established. The non-monotonic properties of the decrease of the modified 
stream with time is explained. 

1. Let a steady stream of viscous incompressible fluid , moving at velocity U away from 
the drop, flow over the drop of radius a. In a spherical system of coordinates with origin 
at the drop centre (the angle 8 is measured from the direction of the oncoming stream) the 
unsteady concentration distribution c (r, 8, t) of the diffusing substance inside the drop when 
there is a first-order volume chemical reaction is defined by the following equation indimens- 
ionless variables: 

(1.1) 

(in which the radial coordinate is related to the drop radius and the concentration to the 
concentration of the solute on the drop surface). Here D is the diffusion coefficient, p and 
p'are the dynamic viscosities of the fluids outside and inside the drop, and k is thedimension- 
less rate of chemical reaction. 

At the initial instant of time the diffusing substance is not inside the drop, while at 
the surface the concentration is independent of time, i.e. 

c (r, 8, 0) = 0, T # 1 (1.2) 

c (I, 8, t) = 1, t # 0 (1.3) 

At fairly high rate of chemical reaction at all times and for any value of k at short times 
the solute diffusing into the drop is concentrated in a thin layer close to the drop surface 
and its axis. Together with the large P&let number this enables us to use the method of joined 
asymptotic expansions to solve the problem. We separate several regions inside the drop in 
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each of which Eq.(3..1) is simplifiedr and shall seek solutions of these simplified equations 
that satisfy the initial condition (1.2) and the boundary condition (1.3) and axe merged at 
the boundary of the separate regions (time is a parameter) s The separation into regions is 
achieved by an asymptotic analysis of the solution in the region of the boundary layer and of 
the fuliowing separated regions (see, e.g. /5/I. 

2. In the region of the diffusion fxrundary ZayeE b-egion I in Fig.11, Eq.fl.l) in the 
variables p = (1 - r)le and v = cosi3 allowing only for zero-order terns in e can be written in 
the form 

+.Zzyv-$-((l-+&kcl+-f$- (2.1) 

Here and henceforth, the subscript denotes the number of the region in Fig.l, 
Replacing the independent variables lp,, w~,T* 

by y,v,t, where 

and rep3.acing ct (*ll~l,~r) by 

c,~~1,~i~4)1)=;.j~jP"Cl(~~.tl,Wl) (2.2) 

we txansform Rq.(Z.l.) into the form af the heat-conduction equation 

Xl a2c, I-----r 
2% @X= 

(2.3) 

A similar change of variables for the equation of unsteady convective diffusion was pro- 
posed in /6-8/, and substitution (2.3) was considered in /3/. 

The boundary conditions far Eq. (2.3) with the indicated transformations and the boundary 
condition (1.3) have the form 

~~(O,?~,~~~~~~~~~~~~, zt+O 

Cl@% Zl, 01) = 0 

The analog of the initial condition for Eq. (2.3) is 

This function will be determined after constructing the solution in all regions fram the 
joining condition. Note that the above transformations ofiudependentvariables and the re;latio 
f(g,, o&=:0 when t= 0 ensures that theinitial condition (1.2) is satisfied, 

Thus the concentration distribution in the boundary layer close ta the drop surface is 

XII the second integral. of solution f2.4) we change the variable of integration 

(71 - W". AS a result we obtain the following expression for the concentration 

f&w~&**h)w- 

where the functsSm g(x) is given by 

(Z-4) 
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To determine the concentration in the neighbourhood of the rear stagnation point (region 
2) it is necessary to obtain the asymptotic form of solution (2.5) as v -cl and for a fixed 
value of y. The first term of formula (2.5) is a small quantity when Y +1, and the main 
contribution to the limit value is made by the second term. In the neigbbourhood of v=l 
the following approximation hold: 

Consequently 

li*c~=-$ ~(i+f)+‘exp( - 2) ds, p = y (&’ - q-‘/B 
V-l 

P 

In the rear stagnation point the variables y and cp = B/e are of the order of unity. 
us assume that the concentration derivatives with respect to y and mare also 
unity. Then Eq. (1. 11, after lineari.zatAon of coefficients, simplifies to 

of the order of 

(2.6) 

Let 

(2.71 

For this equation we have the initial condition c1 = 0 when t = 0 and the boundarycon- 
dition cfl = 1. when y = 0. It is also necessary that the solution of this equation is joined 
as cp +OJ with the asymptotic form (2.6). If we limit the search for the solution of ~q. 
(2+7), which is independent of (P, it can'be shown that Eq. (2.6) is the solution of the pr?sent 
problem, i.e. 

Ca(Y,(Pt2)=lj~cl (2.8) 

In a cylindrical system of coordinates 2,~) = eA/*rsin8 with z axis oriented along the polar 
axis, the equation of convective diffusion for the concentration distribution in the region of 
convective transport (region 3) has the form 

For this equation we have the initial condition cJ = 0 when 
ution of this equation is 

C$= l-tr ‘“P(gs, y) 
( ) i-2 

*=&i-z*), u$3t--+ln~ 

1 = 0. The general sol- 

(2.9) 

The condition for joining at the boundary of regions 1 and 3 enables us to determine the 
function F ($8, 03. For limited values of k, solution (2.51, when v +i and 1Plf 0 

has the asymptotic form 

Taking into account that in the joining region qS=+i and D,= o1 - 1/,In(q,/8), we 
obtain for the function F (%r ws) the expression 

e-%j. 
Near the drop axis of symmetry (region 4) we introduce new variables z and p = s*reine I 

Assuming that in that region the concentration derivatives with respect to the new 
variables are of the order of unity and taking the leading terms into account, we obtain the 
following condition: 



628 

The solution of this equation must satisfy two joining conditions 

(2.11) 

lime, =lim cI, limcq = lim cb 
z-1 V-00 P-- %-a 

and the initial condition cI = 0 when t = 0. The asymptotic 
the form 

limc,=-&y-kl.i gWexp(- &~)a 
Y-= 

P 

For the concentration in region 3 as %+% taking into account that 

%(otO) -q ( *yey I-S(r)=$ 
we obtain 

(2.12) 

form of solution (2.8) has 

l~c~-~(~)LI1(~)ll/l~z~~‘exp(-~‘)&, 
PI 

2 1-z 
pa = el+z e- 

It 

(2.13) 

For limited values of k>‘/, or for any k with t<ln@/s) to 
of s the solution of Eq.(2.15) is the first iteration 

c4 (2, t) - lie&z,W*) 

is the solution of Eq.(2.11) and satisfies the joining conditions (2. .2) and the initial con- 
dition, if in conformity with the stated accurracy of the asymptotic expansion, the terms with 
exponentially small order are neglected. 

The concentration distribution in the region of convective transport must be joined with 
the boundary-layer solution 

lim cl= limq (2.14) 
V--l z-1 

It can be shown that the expression for the concentration (2.13) 

If we take into account that the relation 0% = 01 i- '/,ln(@@) holds as v--l and 

2+-i, then we obtain the following limit values of the concentration in regions 1 and 3: 

Fr- the joining condition (2.14) we obtain the integral equation for determining the 

function f(& 0J 

within terms of the order 

Equation (2.15) enables the asymptotic form of the function f($%, 01) as 
limited values of k to be obtained. In this case the solution is determined by 
term on the right-hand side of Eq.(2.15) in which 

(2.16) 

01+ 0 and 
the second 
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The final form of the asymptotic form of the function f($l,~i) as $1+ 0 is 

f(~~,O1)=~(~)l~~/a~*kla~=~(-~z)dz, ~,~='/&exp(--201~) 
US' 

and enables us to find the limit of solution (2.51, necessary for determining the concentration 
at the forward stagnation point, as v+-- 1 and for a fixed value of y. Note that in this 
case 

x = - 1 + (1 + v) e+, 2, = (1 + v)* (1 - e-‘!) 

1 + 5 (5) = (1 t-v) r/l-W)” 

After some transformations, we obtain 

(2.17) 

Let us assume that at the front stagnation point (region 5) the concentration derivatives 
with respect to the variables y and a = e-i(n - 6) are of the order of unity. Retaining the 

leading terms in Eq.(l.l), we obtain 

(2.18) 

The solution of this equation must satisfy the initial cB =0 condition when t = 0 and 
the boundary condition c6 = 1 when y 5 0, and, also, the two joining conditions 

lim CS= lim cl, lim cs=lim cd 
0.W v-1 u-m z-1. 

It can be shown by direct substitution that expression (2.17) is the solution of Eq.(2.18), 
that satisfies the conditions derived above. 

This result can be arrived at by the following reasoning. In Eq.(2.18) we make thechange 
of variables 

C& = e-%I, E = d', r= '/, (ti' - 1) 

This reduces it to the form 

Reverting to the old variables, we have 
co= lim q 

-1 
(2.19) 

If we note that the main contribution to the limit of the first term of expression (2.17) 
as u-=1 is made by the neighbourhood of the point I = A, while the second term is of 
higher order of smallness, it is possible to ascertain that the joining of the solutions in 
regions 5 and 4 is assured. In the same way it can be established that formula (2.19) is the 
solution of Eq.(2.18) that satisfies all of the stated conditions. 

Thus five regions have been separated in the drop, in each of which the concentration 
distribution has been obtained The limits of these expressions as t-coo correspond to the 
steady concentration distribution presented in /9/. 

3. Let us calculate the dimensionless density of the diffusion stream through the drop 
surface using the concentration distribution in the region of the diffusive boundary layer. 
After integration by parts and replacing in the second term of formula (2.4) the variable of 
integration, we obtain the following expression for the flow density: 
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where the function f(&, ox) is determined from the integral equation (2.15). 
To determine the diffusion stream density in the neighbourhood of the rear and front 

stagnation points we use formulas (2.8) and (2.19) respectively. We obtain 

When calculating the total dimensionless stream of solute through the drop surface 

I= s’ jdv 
=1 

it is necessary, first, to solve numerically, for instance by themethodof iterations, integral 
equation (2.15). However, as previously noted, when k>% or for any other values of k, 

.but t Q In (8/u), it is possible to restrict the calculation to the first iteration, which 
yields an accuracy of order E. Below, for calculating streams formula (2.16) was used for 
the function f& (~3. 

The time-dependence of the local flow for various points of the drop surface are shown in 
Fig.2. The calculations were made for the values of parameters Pe E 100 and k = 0.5. 

0.6 

0.2 / I I 
2 Y t 

Fig.2 Fig.3 

Curve 1 corresponds to the stream at the front stagnation point, 2 to 8 = I/ss, 3 - 8 al/~s. 
and 4 at the rear stagnation point. It can be seen that during times tx 1 the local stream 
is constant, and only later, when t ZS 3, is it reduceddue to the effect of transport along 
the drop axis of the solute,subsequently reaching a constant. This effect is fairly strong at 
the forward stagnation point, it rapidly decreases as 8 increases, becomes insignificant when 

8 = R/2, ana is entirely absent at the rear stagnation point. 
The time-dependence of the total stream is shown in Fig.3 for Pe = Wand k = 0.75W curve 

1, for Ps = i(r and k = 0.5 by curve 2, for Pe = l(P ana k =0.5 by curve 3, and for Pe = *OS 
and k = 0.5 by curve 4. It is seen that as Pe and k increase the effect of the material tran- 
sported along the drop on the stream is reduced. 

In the unsteady problem without chemical reaction the results obtained, shown in Fig.4 
define only the beginning of the effect of the substance transported along the drop axis. Cal- 
culations were carried out for the following values: Ps -80 by curve 1, Pe = 250 by curve 2, 
for Ps = 3.W by curve 3 and for Pe =i(r by curve 4. As Pe increases the "shelf" of the 
stream curve which corresponds to the stage when the stream becomes steady lengthens in time, 
and the effect of the substance diffusing along the drop axis on the stream is negligiblysmall. 

It follows from the results obtained that at the beginning of the process of solute tran- 
sport through the drop surface, molecular diffusion takes place in a direction normal to the 
streamlines,_ and convective transport occurs along the streamline in the region of the boundary 
layer. During the time t--l 
up to a time 6 z 2' = In (81/i%), 

the process of mass transfer becomes steady and remains such 
when the substance transported along the drop axis of symmetry 

begins to effect the diffusion stream. 
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The process of unsteady diffusion was investigated in /3/ using the diffusion boundary 
layer method without taking into account the transport of material along the axis. Hence the 

results of that investigation are only applicable for defining the initial stage of the process 
up to a time t;=T. The internal unsteady problem was also investigated in /l/, where it was 
assumed that the concentration along a streamline was constant. Theresults of that calculation 

are represented in Fig.4 /2/ for Pe=80 by curve 5, and for Pe= 250 by curve 6. TheKronig- 
Brink equation is unsuitable for defining convective diffusion at small times ts;1. In the 

absence of chemical reaction with Pe>i during times r>T that equation approximately 
describes the mass transfer process. However, the question of the correct selection of the 
initial distribution for this equation remains open. For PeslOO during times of order T 
the mean concentration of the diffusing material reaches Z-O.5 which shows the unsuitability 
of the Kronig-Brink method for defining a 

II 

Fig.4 

considerable part of the mass transfer process. 
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In /lo_12/, where the unsteady problem was investigated using finite difference methods, 
results that agree satisfactorily were obtained only when Pe<20. For Pe>lOO, the results 
of calculations are noticeably different. The results of a numerical solution in /lo/ of the 
internal unsteady problem are compared in Fig.5 with those of the present paper with P*= 80 
and k=O. Curve 1 shows the dependence of the modified stream I1 - *Is PedlnWon time. 
Curve 3 corresponds to the modified stream obtained in /lo/. The difference reaches 30% of 
the flow magnitude, which is obviously connected with the need to take into account higher 
order terms in the method of joining asymptotic expansions and, also, with the accuracyof the 
numerical methods used in /lo/. The question of using finite difference methods for equations 
with a large parameter was investigated on the model eqrtation of convective diffusion in /13/, 
where it was shown that to achieve satisfactory accuracy, stiff limits must be imposed on 
the step of three-dimensional variables. 

The internal unsteady problem with a chemical reaction of the first order was considered 
in /2/, using the method developed in /l/. The numerical solution of this problem in /14/ 
yielded results that differed considerably from those in /2/, when the chemical reaction 
rate was high. As is clear from the present paper, this discrepancyis due to theinadmissib- 
ility of the assumption that the concentration is constant along a streamline. 

Thenon-monotonic form of the decrease of the modified stream with timewas also considered. 
Thus in /2/ this peculiarity was explained by the error in the numerical calt+ations, and 
the authors overlookedthenon-monotonicity in their calculations. The results of this paper 
indicate that the modified stream non-monotonicity (see Fig.5) is related to the presence of 
a shelf of the total stream, and is explained by the fact that during a certain time interval 
the concentration distribution intheboundary layer region is quasisteady. 

If the chemical reaction rate constant satisfies the condition kT/s)i, then,as fol- 
lows from the earlier estimates /9/ in solving the steady problem, the results of our invest- 
igation are suitable for defining the mass transfer process inside the drop at all times. 
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THE METHOD OF DISCRETE SINGULARITIES IN PLANE PROBLEMS 
OF THE THEORY OF ELASTICITY* 

S.M. BBLOTSF.REOVSEII, I.K. LIFANOV, and M.M. SOLDATOV 

Plane problems of the theory of elasticity are reduced to sets of singular 
integral equations for which a direct method of solution is developed, 
similar to the method of discrete vortices used in aerodynamics. Numerical 
solutions of a number of plane problems of the theory of elasticity are 
considered, stable numerical solutions are obtained, and their convergence 
is proved. 

When solving problems of the theory of elasticity by reducing them to integral equations, 
the tendency usually was to get away from the singular integral equations (SIE), and to reduce 
them to regular integral equations of the first or second kind /1,2/. A similar situation 
occurs when solving other problems, for example, in electrodynamics /3/. It appeared, however, 
that numerical solutions of regular integral squations of the first kind on a computer were 
unstable. Regular integral equations of the second kind, obtained in the theory of elasticity, 
possesseigenfunctions /2/, and therefore their numerical solution on a computer by direct 
methods is also unstable. In view of these inconveniences in reducing the problems toregular 
integral equations, they are reduced to SIE, for which a stable method (the method of"dfscrete 
vortices" /4/) for their numerical solution has been developed. 

Below, a similar approach is developed for solving plane problems of the theory of elas- 
ticity. These problems for bounded simply connected regions, whose boundary is a closed 
Liapunov curve, are reduced to SIF, of the first kind with Hilbert kernels in complex conjugate 
functions. The conditions are obtained that ensure the uniqueness of the solution of these 
equations. The equations are solved numerically using the method of discrete singularities, 
which is a development of the method of discrete vortices. The idea of this method consists 
in exchanging the set of SIE for a set of linear algebraic equations in unknown functions 
with boundary points selected in some special way, and special.ly situated in relation to points 
at which the values of the required functions are found. 
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